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Abstract

The reusable oxygen and hydrogen tank._ are key

systems for both the X-33 (_b-scale, sub-orbilal
technology demonstrator_ and the commercial
Reusable Launch Vehicle (RLV).

The -backbone of the X-33 Reusable Cryogenic Tank

Vehicle Health Management (VHM) system lies in the
optical network of disu3"buted strain, temperature and
hydrogen sensors. This network of fiber sensors will
Qreate a global strahl and temperature map for
monitoring the health of the tank structure, cryogenic
insulation, and Thermal Proration System. Lockheed
Martin (Sanders and LMMSS) and NASA Langley
have developed this sensor technology for the X-33.
and have addressed 5ever_ technical issues such as

fiber bonding and laser performance in this harsh
environmem.

located on both the X-33 LO= and LH, tanks, while the
Distributed Strain Sensor (DSS) and Distributed

Hydrogen Sensor (DHS) fibers are lec_ed only on the
LH_ tanks, The optics and processing electronics are
housed in the Avionics bay in a VME chassis as shown

inFigure1.

Introduction

launch vehicles of the furore will be developed and

operated within suict e,:onomic constraints. A key
driver to the successful commercial deployment of the
Reusable Launch Vehicle (RLV) will be reducing the
cost of operaxions, A team of Lockheed Martin

companies and NASA Langley have been working on
a demonstration on the X-33 Advanced Technology
Demonstrator (ATD) Vehicle of the capabilities of

fiber-optic based sensors to monitor the su'ucu_l
imegri_ of large composite sm'uctu_s. On the X-33,
the Dislribulcd Temperature Sensor (DTS) fibers are
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Figure 1. Distributed network of season for

monitoring strain, tempertturc, and hydrogen on
the X-33 tanks



JAN-29-1998 18:18 SANDERS MSD 603 885 7264 P.12

The intent in designing these systems was to prove the

viability of fiber optic sensors in a flight environment
to transl_ the :echnolog_ to the RLV. COTS

technology was used as much aspossible to reduce the
cost and schedule time. The DTS, designed under
subcontract by SPEC Inc., uses standard 62.5pm core
muhimodz communication fibers epoxied over the
cryogenic tank insulation as the sensor elements, and a
di.qribulcd anti-Stokes Raman thermometry technique
to process the signal.' The strainthydrogen scnsors of

the DSS are 9lJm core single mode distributed Bragg
Gratins fibers epoxicd along the composite LIt: tanks"
dual lobe joints. A thin paUMimn coating applied to
the Bt'Igg Gratings induces a strain on the grating
when exposed to hydrogen, a_ing a hydrogen sensor
which uses the same processing as the strain sensor
system. NASA Lar_le 7 Research Center

(NASA/LaRC) initially developed and prototTped the
DSS processing technique,: and the flight.worthy
design iS cummtly being implen_ntcd by Sanders, a
Lockheed Martin Company. This paper describes the
design technology and issues of fiber optic sensor
bonding and the DSS optics and electronics.
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With tht_ requirements LMMSS developM _-ci_

adhesives. These adhesives were applied during a
ground test of a composite cryogenic tank. A DSS
singlemode fiber was appliedto the tankby bonding
the Bragg Gratings with an adhesive that had a good
CTE match to thecomposite structure. The rest of the
fiber was bonded with ano[hcr adhesive that miuimized

sU'aintransferas not tO induce false readings. In fotur¢
applications a resilient adhesive should be used to
further reduce the _ transfer in non sensor

locations, This bonding of the DSS is shown in
Figure 2.

Design Technology

Fiber Optic Tank Bondin_

The implementation of the fiber optic sensorsto the
tank su'ucture is crucial to the overall sy_"m

performance. There has been much effort to embed

fiber optics in composite structures, but with a

structure that will be exposed to the extremes that thc
cryogenic fuel tanks will experience. Due to this, it
was cle_rmined that the fiber optic sensorswould be
bonded to the surface of the tank and over the

cryo¢¢nic insulation,

LMMSS developed adhesiv¢_ and bonding techniques
to accomplish this. Thc task of bonding r_lulred that
the adhesives be able to accommodate the changes in

the temperature from the low to the high ranges. The
thrcg (3) fiber sensors had different requirements. The
temperature sen.,_.urrequired lba_ the fibe_"have a good
thermal conduction path to sense the temperature
changes. The hydrogen lenkdetection required that the
Bragg Gratings be isol_ed from mechanical strain so it
does not influence the measurcmcnt. Finally. the strain
mensurcment requiredthat thcr_ be good suaintransfi.-r

to the Bragg Grating_ and that Coefficients of Thermal

Expansion (CTE) not influence the measurement.
2

Figure 2. OJstrlbuted optical rdber strain sensor
bonded to composite liquid bydrulleu tank, The

single fiber makes 20 biaxJll struin mensurementL

The bonding of the DTS was done using another

adhesive which provided the required thermal
conductivity to make the sensor effective.. The
bonding of this sensor was much Icsscritical than the
DSS. The mstalledDTS isshown m Figure3.

Figure 3. Distributed optical fiber temperature
sensor bonded to cryogenk insulation. The single

fiber makes 50 temperature measurements.

AIAA/ASME/ASCFJAttS/ASC Structures, Structural Dynamics, and MateriaLs Confc_'nce April 20-23, 1998
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The lessons learned from this effort include the
bonding of various fiber optic sensors and how to
critical the bonding ts to the scnsor pcr_rmancc.

Optics and Electronics DSS

The DSS monitors the change in the resmmnt

wavelength of each Bragg grating, _,, mused by the
applied strain. It employs a wavelength scanning
source _" a nmable laser to acquire the _"
reflected spectral response. Back-reflected sensor data

is digitized, sampled, wavelength tagged by a reference
interferometer, and Fourier methods are used to
recover the reflexed center wnvclangth of each

grating. Shifts in the resonant wavelength occur due to
the applied szrm_ and _, as _ by
the following cquation:

_. _ = (t-p.)_ + (a+_)_T (I)

where _ the applied strain changc, is assumed

uaifofrn over the grating length. AT is t_c temperature

change, p,__=0.204 is the effective alamo-optic
coefficient, o,=---0.55xi0+ /K is the thermoelastic
coefficient, and _i8.3xtO'°/k is the themlo-opti¢
coefficient)

While fiber optic dislributed sensin8 systc'ms have
been demonsu'aled in the laboratory, moving this

teclmotogy to flight vehicles has imposed many desigll
constraints and challenges. For instance, all of the
electronics must be designed so as to operate in an
extremely rugged _ibraxional envkonment where the
temperatures can be as high as 85 or as low as -15
degrees Celsius. Furthermore, as can be seen above,

the applied grain is related to both the temperature and
the mechanically induced strain experienced by the
structure. The X-33 tanks are expected to undergo
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wide [emperature variations from roughly ambient to
cryugcnic conditions. The expected su-tin/temperanare
range for the X-33 LII+ranks is equivalent to -3200 to

3800ttm, correspondingto a_ ll.Srun wavelength
tuning range. Con_lafion with conventional strlin zmd
temperature sensors will determine the system
accuracy and provide calibration for isolating _raln.
Several of the requirements drlviilg the design of the
DSS and DTS listed in Table 1. The sWmn range,

measurement frequency, ieng_ of the _, and
number of sensors have a directrelationshipwithth_

laser tuning range, tuning speed, ]inewidth and power
rcqulrcmcnts, respectively.

Ntnnber of sensors:
Strain measurement fiequency:
Sensor leagth:
Conduction cooled VME electronics
Vibration:

Card-edge tempen_re:
Number of VME modules

20
0.5 Hz

20fe_

0.05 G2/Hz
-IS to $5_C

2 (,]o_)

Table I - DSS Requirements Summary

A block diagram of the DSS is shown in Figure 4. It
consists of a tunable laser(s), i wavelength tagging

Michelson intefferometer, an optical distnl_Jti_
network, optical receivers, and a digital signaJ
processor. The biggest ch_ge from the original
NASA prototype was in the technology of the nmabie
laser(s). NASA used an external cavity mechanica_y
tuned laser employing a rotating reflective gratingas

the wavelength tuning and selection device. ARer
analysis of the rotational and translational parameters

(dl/dq, di/ds) goveraing a typical sy_teni, it was
ascertained thatthesctype of device_ could not be used
in the X-33 environment due to *.heir susceptibility to

mode hopping during vibration.

3
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IFilure 4. DSS mock Diagram

Use of a tunable fiber laser was also investigated, and

is still under investigat/on by NASA/LaRC. It wouId

have certainly provided the wavelength tuning range

required, as has been previously demonswated," but it

would not meet the tuning speed requirement, in order

to provide a singlu modu output, the fiber ia.scr Icngth
needs to be less than 3cm, and it mu_ be tuned by

external stretching of its cavity length. Further

technological improvemen_ were needed to reduce the

vibratwn effects on the mechanical riming mechanism.

Because v,-bralfion effects had appeared to have ruled

out other technologies, laser diodes were investigated.

Of the two types of electronically tunable laser diodes

that exist, the Distributed Brag S Reflector(DBR) lasers

have a wider tuning range (--4nm) than Distributed

Feedback (DFB) lasers {-2-3nm). and neither are

commercially available. The development of these

lasers is s(iU in the research and development phase,

and are known to be manufactured by research centers

only. One such center has begun to develop
commercial DBR losers for the tclccommunicafions

industry, and is supplying DBR lasers for the X-33

DSS. This is expected to be the first time that a DBR

ElectronicsModule

commercial laser,normally packaged to meet Bellcone

TA-NWT-983 specifications,will be subjected to a

harsh flightenvio_nment such as thatof the X-33..

A DBK laseris a semiconductor laser which uses a

phase tuning secdon and a tunable Bmgg reflecting

section for wavelength tuning and sclcction,

rcspcctivuly. Its operation is analogous to the external

cavity tunable laser, but the laser is tuned electrically

by varying the current to each section. The current
alters the carrier concenn'adon or refractive index, and

hence the optical length of the medium. Tic cxix,-ctcd

4nm tuning range made the use oftwo of these devices

ideal for the X-33 DSS system. There are

performance issues d_ axe still being investigated.

They include the effects of phase noise, lincwidlh

broadening, lifcqime with increased tuning current,

temperature limitations and cooling mechanisms.
Some of these will be discussed later.

The Michebon inted'erometcr design evolved from a

fiber optic [-'abry-Perotcavity. NASMLaRC replaced

the cavity With a Michelson interfcromctcr using

Faraday rotatormirrors when it exhibited polarization

fading. The cavity length was originally twice the

length of the longest sensor (-20x2 fetq) to allow for
4
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Nycpdst sampling, but it was decreased to the same
length in orck'r to reduce thc cohcrcncc lcngth
(linewidth) requirement of the laser.

In au aUempt to maintain the COTS nature of the
experimented system while incurring minimal risk. the
optical distribution network w'a.,L designed using a
commercial 2x32 waveguide coupler and several Ix,?.

fused fiber optic couplers. On the other hand, custom
photodetectors wcrc used to obtain maximum
sensitivity, since the expected return levels were not
known. This lack of information still represents a risk

to system performance.

has chomm to use the Analog Devices Quad
SHARC for the heart of the signal ptocesuTr since this
COTS signal processor allowed a maximum reuse of
previously developed sot_ware and the type of

increased flexibilit)' that a technology demonstration
program requires. Each of the 40 Mhz. SHARC signal
processors is rated to provide a sustained 60 MFLOPS
of processing power and the aruhitecture is particulmrly
optimized to ,mpporx the Fourier processing that
underlies the DSS operations. The DSP can also accept
information and commands from the host processor
and the laser conlrolk-r and receiver circuib-y, thus

acting as the central controller for the DSS. A multi-
cMp module with four signal processors isavailable
that is capable of operating in the temperature regime

imposed by the X-33 flight testenvironment.

I5$u_

There are general issues or constraints imposed by the
X-33 VHM chassis and environment which affected

the DS5 design, and there were specific component
issues. Only a limited amount of VME board space
existed oft 2 modules. This directly influenced the

number of sensors (optical receiverO that could be
measured. To keep :he receiv_ circuitry (photodiodes,
transimpedance amplifiers, multiplexers, ADC) on one
CCA, the number of sensors was reduced to 15. We
have choscrt to locate the passive optical compotaents
on the cover of the Optical Module to facilitate
assembly. The limited bend radiusof singk modc

fibers are expected to cause fiber routing rustrictions

determine the layoul of thc optical components.
All splicc's will be re.coated with acrylate to avoid
mechanical _pport and conserve space,

The procurement of commercial lasers with a built-in
thcrmo-clcctric coolers (TECs) will be the limiting
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facxor in the operation of the DSS over tcmperamre.
The maximum acceptable card edge temperature of
85"(; may occur only af_ landing when the X-33

cooling system shuts down for a short pta'iod of time,
hcrm.wcr, the X-33 tcrapcraturc resime is not known
with any certitude. Therefore, the DSS may be

oper_onal during only certain phases of the flight test
profile. The optical distribution aerwork is comprised
of fused fiber couplersand planar waveguides. Both
are rated for the same highest operational temperature

("-+85 "C). The limiting factor in the fused fiber
devices are the epoxies _sed to i_ovide strain relief.
However, one canwork with vendors to specify the use

higher temperature curing epoxies ifnocessary.

"I'm swain measurement frequency (laser sweep slx'zd)

and sensor _ (modulation) will create a
Imckreflected signal that is exlx:¢tedto have frequency
cmapomcntsulpto 4MHz. Since the DBR has a non-
linear wavelength responseto a linear drive cummt, the
liner drive needed to be divided into segments whkh

would produce piecewise linear wavelength outputs.
Fourier transform processing required that these

scgmcnts bc cqual in Icngth. Laser output power also
fluctuates with laser drive current, and therefore the

digitized measwed samples of the scnsor response
waveforms needed to be compensatedforpower.

Careful atttmtion was paid to the noise and liaearity of

the laser drive design. Non-linearities aild noisecan

cause the laser to produce a non-monotonic wavelength
output which would create jumps m the wavelength
tagging signal, and thereby corrupt the acquisition

process of back-retlected data. Sandcrs has developed
a method of tuning DBR lasers which produces a

monotonicwavelength response.

As the tuning currentstO each laser increases,sodoes
the linewidth. In orde_ to accept the linewidth

performance of the lasers, the processing had to be
changed from the original NASA baseline of using the
wavelength tagging signal directly for Nyquist
sampling, to interpolating the wavelength tagging
signal. This was accomplished by reducing the
Michebon interferometcr AI. This als_ helped reduce

the modc-hopplng sensitivity of the wavelength

raging clock, and n.'duced the laser dHvc nolsc and
Imearity requirements.

Mechanical isolation of the lasers was considered, but

limitations in board space made this impossible. The

5
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risk is curr_dy being mitipted by vibration testingof

a representativela_cr.

By far the most ctmilengmg aspect of the DSS design is
the use of an Lm_'feromewr for wavelength tagp_.

/my type of interfero_¢terisexm_ely sensitive m
vibration m well as temperahu_ ¢l_nges. Sanders is

currently developing a method to allow the use of a

fiber opUc inte/qerometeron the X-33 by implementing
a eomb/_don of mecb,'micai isolation and processing

techniques to r_lucc the interfm-omcter's suscepGbility
tovibration.

Summary

Valuable lessons have been leawned in the development

of the X-33 fiber optic dislnributed sensors. Preliminary
work has been carried out to JdentL_ snd chara¢lerlze

banding techniques far cryogotic composite structures.
A new method/circuit for driving DBR lasers has b_cn

developed which produces a piecewise-continuous
monotonic wavelength response. Processing

techniques are currently being developed to lessen the
impact of temperotare and vibration effects on the
in_ctcr for this particular design. Some
technological improvements arc still n_cdcd in lhc area
of expanding the temperature range of optical rccciw.'rs
and TE coolers.
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